Improved environmental flows for river restoration – a case study from the Lesser Caucasus, Azerbaijan

Farda Imanov¹, Harald Leummens², Anar Nuriyev¹, Saida Zeynalova¹

¹ Baku State University, Faculty of Geography

² UNDP/GEF "Reduction of transboundary degradation in the Kura Aras river basin"

European River Restoration Conference, 5th Edition Celebrating successes and addressing challenges

11-13 September 2013, Vienna, Austria

Pilot river basins

Pressure: water abstraction

Water intake facility of Zurnabad HPP Gancachay river

Irrigation network, Gancachay river basin

Pressure: industry & mining

Diffuse & point sources of pollution

Industrial waste

Tailing dam Goshkarchay River

Iron ore mining Qoshkarchay River

Flood protection

Physical and morphological changes of water bodies

Impacts from human activities

- Change in natural flow regime of rivers.
- Deterioration of water quality and ecological state.
- Drying up of river flow, from excessive withdrawal for irrigation, and storage in reservoirs.

E-flow approach

Former Soviet Union

 Medium-sized rivers – maintain annual flat flow rate equal to 75% probability of lowest average monthly flow

New proposal

- 1. Specific for each month, no annual flat rate.
- 2. Based on natural flow, before anthropogenic impact.
- 3. Observed monthly Q_{min} as 1st approximation for E-flow value.
- 4. Correction ΔQ_1 : statistical analysis of long-term changes in monthly discharge. Account for Climate Change
- 5. Correction ΔQ_2 : statistical analysis of intra-monthly variation coefficient. Account for natural variability

Final formula: $Q_{ef} = Q_{min} - \Delta Q_1 + \Delta Q_2$

Proposed new E-flow approach

In Practice

- Calculate long-term average monthly flow for anthropogenic impact period (Q_{observed}).
- 2. Compare monthly $\mathbf{Q}_{observed}$ with monthly \mathbf{Q}_{ef}
- 3. If monthly $Q_{observed} \ge Q_{ef}$, then E-flow is provided, otherwise not
- 4. Water available for extraction: $(Q_{abstract})$ based on Q observed, corrected for Q_{ef} :

$$\mathbf{Q}_{abstract} = \mathbf{Q}_{observed} - \mathbf{Q}_{ef}$$

New E-flow – practical application

Gancachay upstream

Month

New E-flow – practical application

Shamkirchay middle section

Month

Recommendations

- E-flow hydrographs for pilot tributaries were calculated from statistical analysis of long-term discharge time series.
- Proposal prepared to adopt new government regulations, to guide water abstraction licensing for economic use.
- E-flow only (first) part of solution. Recognized need for:
 - Addressing land use in floodplains and beyond.
 - Active restoration of aquatic ecosystems.
 - Improved science & monitoring.

Thank you for your attention